

Project coordinator : Cirad www.after-fp7.eu

African Food Tradition rEvisited by Research FP7 n°245025

Start date of project: **01/09/2010**Duration: **45 months**

Deliverable number: D 4.1.2.1

Title of deliverable: Report with the list of constraints involved in the

processing of products from Hibiscus sabdariffa

Deliverable type (Report, Prototype, Demonstration, Other): Report

Dissemination level (PU, PP, RE, CO)*: PU

Contractual date of delivery: February 2012

Actual date of delivery: September 2012

Work-package contributing to the deliverable: WP 4

Organisation name of lead contractor for this deliverable: UCAD

<u>Authors:</u> Mady CISSE, Ndéye Adiara NDIAYE, Alé KANE, Nérovique GEMINA, Djibril DIATTARA, Malick DIOUF, Fallou Mbacké SAMBE, Cheikhou KANE, Mamadou FAYE, Mama SAKHO, Coumba TOURE KANE,.

This document has been send to:

The coordinator by WP Leader	Date: September 2012
To the Commission by the Coordinator	Date: September 2012

^{*} PU: Public; PP: Restricted to other programme participants (including the Commission Services); RE: Restricted to a group specified by the consortium (including the Commission Services); CO: Confidential, only for members of the consortium (including the Commission Services)

AFTER (G.A n°245025) – Deliverable 4.1.2.1 Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

TABLE OF CONTENTS

1. Introduction	
2. Sampling	3
	-
3. Methodology	4
4. Results and discussion	4
4.1. General observation	4
4.2. Manufacture of the beverage	
4.3 Manufacture of the syrup	
4.4. List of constraints during the process of drink and syrup	10
4.5. Reengineering.	10
4.6. Manufacture of the powder	17
5. Conclusion	18
References	19

Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

1. Introduction

Hibiscus sabdariffa L. is an herbaceous plant, cultivated largely in tropical and subtropical areas of both hemispheres. It belongs to the family of Malvaceae and is known by different names such as Guinea sorrel or bissap in Senegal, karkadé in North Africa, roselle or sorrel in Asia and flora of Jamaica in Central America (Morton & Roselle, 1987; Glew et al., 1997; Lorenzo et al., 2000; McClintock.& El Tahir, 2004; Babalola et al., 2001; Nyarko et al., 2006; Cisse et al., 2009a; Cisse et al., 2009b)

Originally in Sudan, *Hibiscus sabdariffa* was introduced in Senegal in the 19 th century (Kerharo & Adam, 1974). It is traditionally grown by women for local consumption of leaves and calyxes for the sauce, drinks and jams. Also, In Senegal, traditional processing of the *H. sabdariffa* calyx has been greatly improved by the establishment of many small enterprises.

Traditional food products (drink, syrup) from *Hibiscus sabdariffa* calyx are generally manufactured at home (in small scale) or small factories, enterprise (in semi industrial scale) with a lack of technical tools to control the quality.

It is in this context that many traditional firms manufacturing products from *Hibiscus* sabdariffa were diagnosed.

2. Sampling

Manufacturing processes of drink, syrup and powder from bissap were selected for this study. In fact, drink and syrup are the two main products from roselle calyx according the results of the survey (deliverable D 1.1.2.3). *Hibiscus sabdariffa* powder is also starting to appear on the local market.

Four companies named Dakar 1, Thies 1, Thies 2 and Kaolack 1 respectively located in Dakar, Thies and Kaolack were chosen (**Figure 1**) in order to avoid changing of the sample from collection to analysis. Further these three regions are considered to be the largest areas of consumption of products from bissap calyx. In each company the **table 1** indicates the products concerned and some special features.

Table 1. Some special features of the companies

Companies	Region	Products ¹	Number of people working in the production
Dakar 1	Dakar	Drink, syrup	-
Thies 1	Thies	Drink, syrup, jams, powder	3
Thies 2	Thies	Powder	
Kaolack 1	Kaolack	Drink, syrup, jams	3

¹ Products involved in the diagnosis

Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

Figure 1. Location of the companies

3. Methodology

Diagnoses were made with the consent and full cooperation of the companies concerned. For diagnosing a team of two people was chosen. Their role is to monitor all stages of process from raw material to finished product. The team simply note the manufacturing process carried out by the company itself. Moreover, in the preparation of these visits, companies were aware that the fact of our presence should not in any case make them change their way of working at all levels. The team brought with him a temperature sensor, a refractometer, pH paper and a cooler.

4. Results and discussion

4.1. General observation

Three (03) out of the four (04) companies are run by women who also handle the production. Only the company Thies 2, producing the bissap powder man belongs to a duo composed of one Senegalese and one French man. For this latest company, a woman is involved in the production of powder with two other men.

Production is carried out in family homes. In some cases, some small adjustments were made to separate production area from rooms housing. Production equipment used is rudimentary, artisanal, locally produced.

Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

Operators comply with the good hygiene practices (washing hands, port gown, cap and gloves, change of shoes to go out and washing hands after entry, cleaning and disinfection of equipment and packaging material)

4.2. Manufacture of the beverage

Figures 2, 3 and **4** show respectively the process flow diagram for bissap drink according Dakar 1, Thies 1 and Kaolack 1 companies. The analysis of the figures shows many commonalities and some fundamental differences between processers.

Producers of Dakar 1 and Kaolack 1 used as raw material a mixture of two varieties of *Hibiscus sabdariffa* in a proportion of 50/50. Producer of Thies 1 manufactures the bissap drink from the aqueous extract used to make bissap syrup.

Final products are significantly different according total soluble solid Quantities of sugar introduced during the formulation stage are the main cause.

The **table 2** lists all the steps used in the process flow diagram of bissap, the concerned companies, the equipment used and the conditions (temperature, duration) for performing the step. The analysis of the table shows that all equipment used is not appropriate regardless of the step. All operations are manual. Some important steps such as heat treatment, packaging are not adequately monitored or controlled.

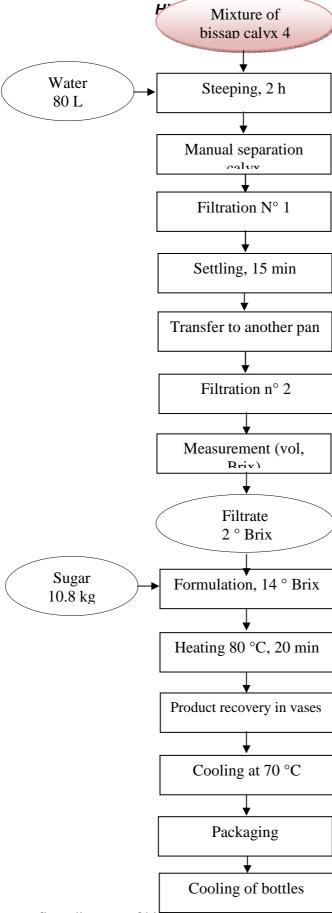


Figure 2. Process flow diagram of bissap drink according one company (Dakar 1) at Dakar

Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

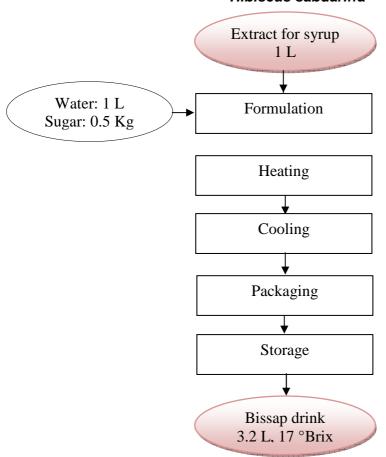
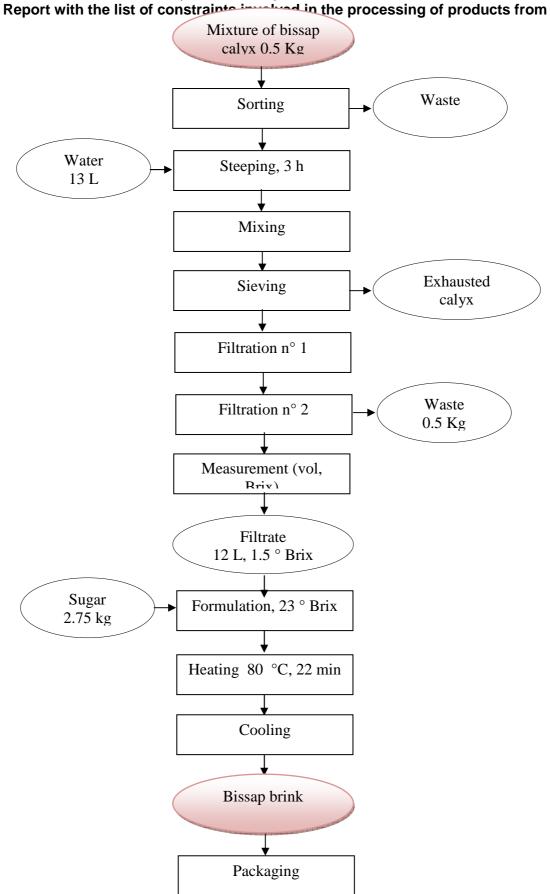



Figure 3. Process flow diagram of bissap drink according one company (Thies 1) at Thies

Figure 4. Process flow diagram of bissap drink according one company (Kaolack 1) at Kaolack

Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

Table 2. Lists of all the steps used in the process flow diagram of bissap drink, the concerned companies, the equipment used and the conditions

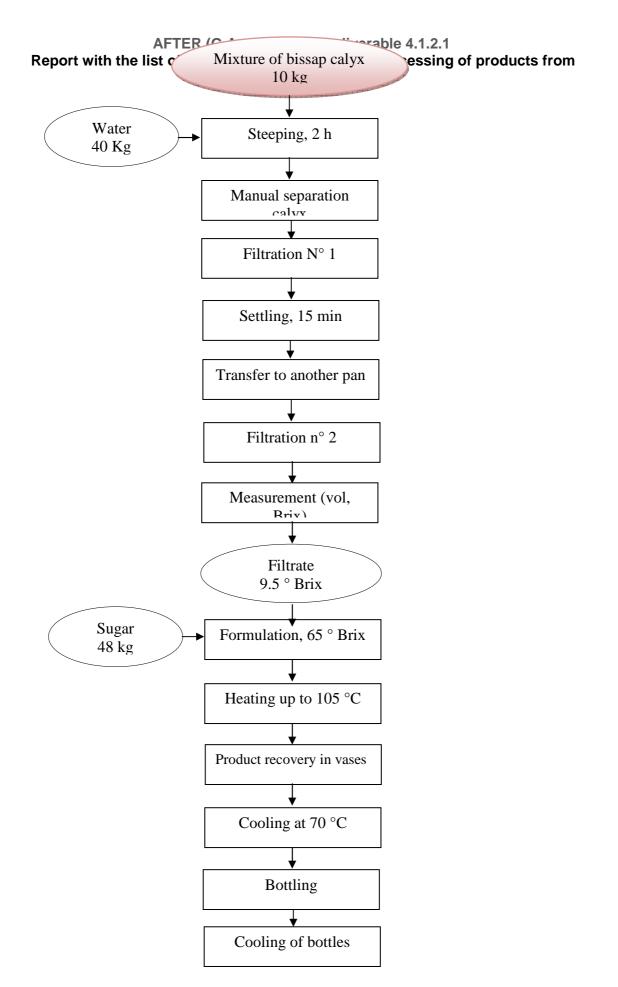
Stage of process	Dakar 1	Thies 1	Kaolack 1	Equipment	Conditions (T, t)
Sorting			V	Manual	Room temperature, few minutes
Steeping	V		V	Pan, bucket, bowl	Ratio calyx/water : 1/20 to 1/30 Room temperature, 2 à 3 h
Separation of calyx	V			Manual	
Mixing			V	Wood skimmer	
Sieving			V	Strainers	
Filtration	V		V	Light cloth, cotton wool, sieve	Room temperature
Settling	V			Bowl	Room temperature
Transfer	V			Pan, bucket, bowl	
Measurement	V		V	Graduated carafe, manual refractometer, mercury thermometer, ordinary balance	
Formulation	V	V	V	Cane sugar from Senegal or Gambia	Room temperature, ° Brix: 14-23
Heating	V	V	V	Cooking pot, flames obtained by gas combustion skimmer	Temperature > 80 °C Time: 20 -25 min
Cooling	V	V	V	Pan, bucket, bowl	Cooling with water at ambient temperature until to 70 °C
Packaging	V	V	V	Plastic bottles, glass bottles, plastic bag	To the ambient air, manual, temperature of product
Storage	√	V	1	Domestic refrigerator and freezer	Temperature : 6-10 °C Time : few days to several weeks

Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

4.3 Manufacture of the syrup

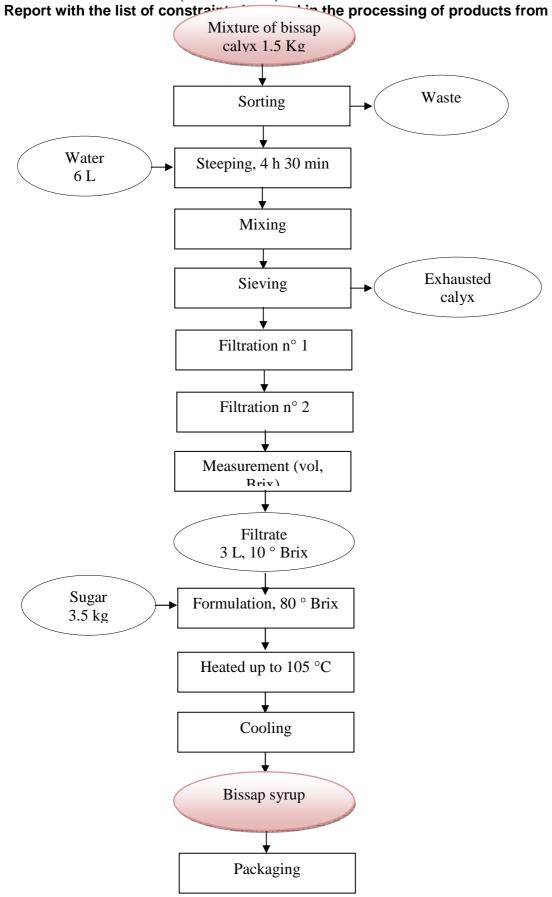
Figures 5, 6 and **7** show respectively the process flow diagram for bissap syrup according Dakar 1, Thies 1 and Kaolack 1 companies. The analysis of the figures shows many commonalities and some fundamental differences between processers.

Process flow diagram of bissap syrup for Dakar 1 and Kaolack 1 producers are exactly the same as that of the beverage. Moreover, the same equipment is used. The differences are observed in the proportions calyx /water, the step of formulation and temperatures used during heat treatment. For syrup the ratio calyx/water is between 1/4 to 1/8. Total soluble solid of syrup vary from 650 to 850 g.Kg⁻¹. The heat treatment (15 to 20 min according the processer) involves heating under continues manual stirring until the temperature of 105 ° C. The product is then cooled to room temperature until 70 ° C before packaging. Thies 1 is the only company using potassium sorbate in order to stabilize the product.


Figures 8 show the photos of different steps during the manufacturing of bissap drink or/and syrup.

4.4. List of constraints during the process of drink and syrup

The overall analysis of different manufacturing processes is used to compile the table 3 that gives the observed constraints for each stage as well as general observations.


4.5. Reengineering

The constraints identified were able to propose some solutions shown in **Table 4**. To improve product quality, ensure consistent quality between batches of production, reengineering step is essential. In this context the optimization of pasteurization schedules and the study of the stability of the company's products Dakar 1 are in progress.

Figure 5. Process flow diagram of bissap syrup according one company (Dakar 1) at Dakar Page **11** sur **19**

AFTER (G.A n²45025) - Deliverable 4.1.2.1

Figure 6. Process flow diagram of bissap syrup according one company (Kaolack 1) at Kaolack

Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

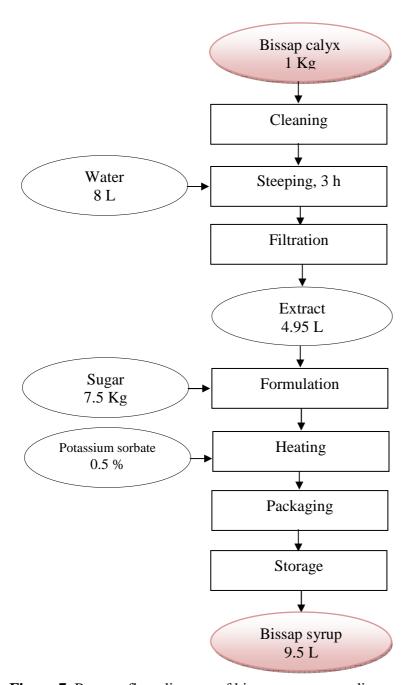


Figure 7. Process flow diagram of bissap syrup according one company (Thies 1) at Thies

AFTER (G.A n°245025) – Deliverable 4.1.2.1 Report with the list of constraints involved in the processing of products from

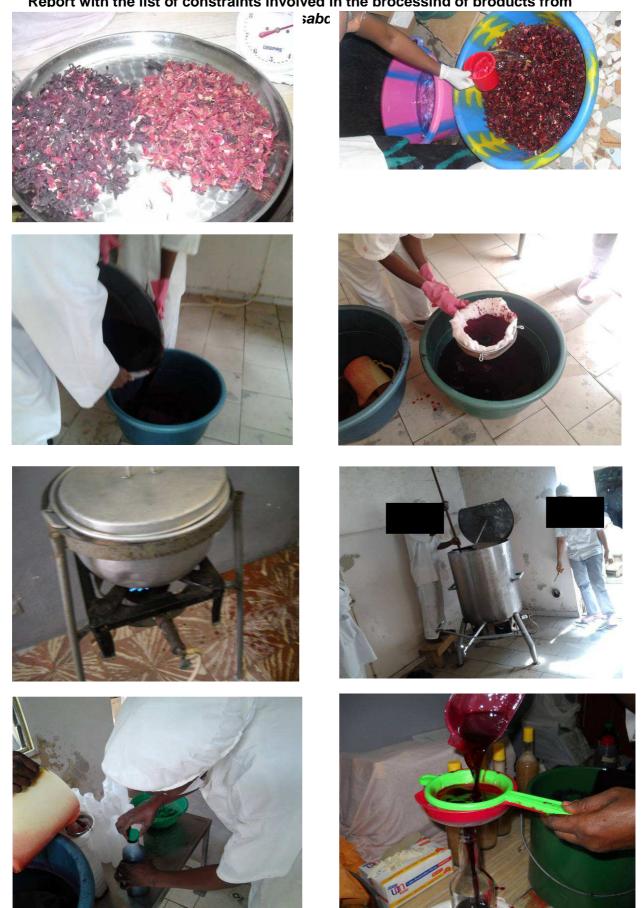


Figure 8 . Photos illustrate the various stages of manufacture of bissap drink or/and syrup

AFTER (G.A n°245025) – Deliverable 4.1.2.1 Report with the list of constraints involved in the processing of products from *Hibiscus sabdariffa*

Table 3. List of constraints for each stage during the process of bissap drink or/and syrup

	Constraints	Stage	Observations
Drink, syrup	Microbial	All stages	Operations are almost all at room temperature in a
	contamination		domestic environment without special device to improve
			air quality
Drink, syrup	Gloves	Manual separation,	Some structures use inadequate gloves. The gloves used in
		filtration,	the heat treatment step cannot avoid burns
		measurement,	
		heating, packaging	
Syrup	Sugar dissolves	Formulation	Dissolving the sugar is difficult and slow. It requires a long
			manual agitation and sometimes it is not completely
			dissolved thus altering the appearance of the product
Drink, syrup	No control of heat	Heating	Difficulties in applying the good conditions
	treatment		(temperature/time) due to thermal heating by gas stove.
			Containing material used to be treated the products and the
			control instruments for temperature are not appropriate.
Drink, syrup	Cooling at air	Cooling	Cooling after heating is slow and source of
_			recontamination of the product before packaging

AFTER (G.A n°245025) – Deliverable 4.1.2.1 Report with the list of constraints involved in the processing of products from *Hibiscus sabdariffa*

Table 4. Examples of solutions for reengineering

Stage	Solutions for reengineering		
All stages	Have an effective antiseptic, clean containers, use disposable		
_	gloves		
	Effectively clean and sanitize equipment		
	An approach to move forward. Separating at least weighing		
	operations, sorting, soaking and filtration of other operations of		
	the manufacturing process		
	Do not prepare different products at the same time to avoid cross-		
	contamination		
	Change wash water and disinfection after each preparation of		
	product		
Steeping	Optimize this stage; time is between 2 and 3 h. Especially the		
	characterization of the product shows that the extraction yield is		
	very low (less than 50%). Grinding calyx will be an avenue		
Filtration	Using bag filter system would be a good alternative		
Measurement	Use of more precise measuring instruments (scales, graduated test		
	tube, temperature probe)		
Formulation	Using sugar syrup		
Heating	Use of appropriate equipment (pasteurizer, cooker)		
_	Optimization scales pasteurization and cooking		
Cooling	Use of chilled water		
Packaging	Use a packaging for hot filling		

AFTER (G.A n²45025) - Deliverable 4.1.2.1

Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

4.6. Manufacture of the powder

Hibiscus sabdariffa powder is a new product made by a few companies. In our study only Thies 2 company produces powder of bissap. **Figure 9** gives the process diagram.

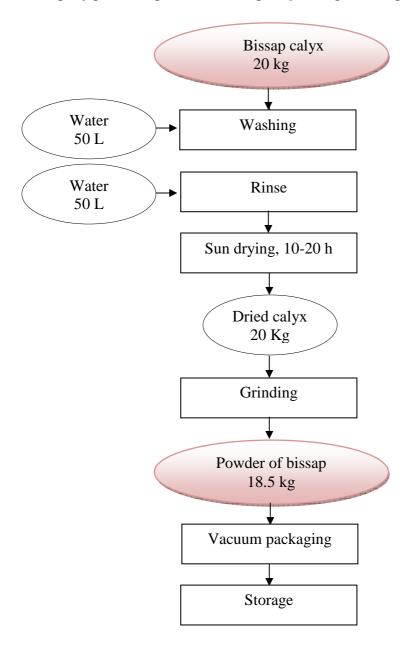


Figure 9. Process flow diagram of bissap powder according one company (Thies 2) at Thies

The overall analysis of the process is used to compile the **table 5** that gives the observed constraints for each stage as well as some recommendation for reengineering.

AFTER (G.A n²45025) - Deliverable 4.1.2.1

Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

Table 5. Constraints and recommendation for reengineering for the production of bissap powder

Steps	Constraints		Reengineering
	High water consumption	✓	Choose a raw material with high
	Losses of anthocyanins		quality
Washing/Rinse			Use a dry cleaning to remove foreign bodies (debris sand, stone, etc.)
	Significant duration	✓	Choose a raw material with high
	Requires significant space		quality
Drying	Losses of anthocyanins		
Drying		✓	Use a dry cleaning to remove
			foreign bodies (debris sand, stone,
			etc.)
	Inappropriate grinder	✓	Appropriate grinder
Grinding	Heterogeneity in the size of		
	the powder	✓	Screening and calibrating system
	Labor intensive		for the powder
X7	Significant duration	✓ .	Appropriate equipment
Vacuum packaging	Inappropriate equipment		

5. Conclusion

As a whole, the working conditions are acceptable within the structure visited. Operators used cover, do not wear jewelry and changed shoes before to go out. However, some measures can be recommended:

- Good hygiene and manufacturing practices can be improve
- Review the dosage of the antiseptic solutions and to create a map of renewal products to avoid the resistor of microorganisms for the cleaning and disinfection solutions.
- Introduce the principle of the forward. At least separate clean and soiled areas. Do not make the entire production process in the same enclosure.
- Consider the implementation of HACCP method.
- Better supply of the raw material in order to have a consistent product quality.

Further work is underway with two companies (Dakar 1 and Thies 2) in the reengineering step. Also, the optimization of pasteurization schedules and the study of the stability of the company's products Dakar 1 and Thies 2 are in progress.

Report with the list of constraints involved in the processing of products from Hibiscus sabdariffa

References

Babalola S.O., Babalola A.O. & Aworh O.C. 2001. Compositional attributes of the calyces of roselle (*Hibiscus sabdariffa*), *J. Food Technol. Afr.* 6 (4), 133–134.

Cisse M, Dornier M., Sakho M., Diop C.M., ReyneS M. & Sock O. 2009a. La production de bissap (*Hibiscus sabdariffa*) au Sénégal *Fruits*, 64, p. 111–124.

Cisse M, Dornier M., Sakho M., Ndiaye A., Reynes M. & Sock O. 2009b. Le bissap (*Hibiscus sabdariffa* L.): composition et principales utilisations *Fruits*, 64, (3) p. 179–193.

Glew R.H., VanderJagt D.J., Lockett C., Grivetti L.E., Smith G.C., Pastuszyn A. & Millson M. 1997. Amino acid, fatty acid, and mineral composition of 24 indigenous plants of Burkina Faso. *J. Food Compos. Anal.* 10, 205–217.

Lorenzo D., Atti-Serafini L., Santos A., Frizzo C.D., Paroul N., Paz D., Dellacassa E. & Moyna P. 2000. *Achyrocline satureioides* essential oils from southern Brazil and Uruguay. *Planta Medica* 66, 476–477.

McClintock N.C. & El Tahir I.M. 2004. *Hibiscus sabdariffa* L., in : Grubben G.J.H., Denton O.A. (Eds.), PROTA 2 (*Plant Resources of Tropical Africa*): vegetables [CD-Rom], PROTA Wagening., Neth..

Morton J.F. & Roselle, M.J. in: Dowling C.F. (Ed.), 1987. Fruits of warm climates, Media, Inc., Greensboro, NC, USA, pp. 281–286.