Project coordinator : Cirad www.after-fp7.eu # African Food Tradition rEvisited by Research FP7 n°245025 Start date of project: **01/09/2010**Duration: **45 months** Deliverable number: D 1.3.1.2 Title of deliverable: Report on HACCP studies per product Deliverable type (Report, Prototype, Demonstration, Other): Report Dissemination level (PU, PP, RE, CO)*: PU Contractual date of delivery: August 2011 Actual date of delivery: August 2011 Work-package contributing to the deliverable: WP 1 Organisation name of lead contractor for this deliverable: CSIR Authors: Annali JACOBS, Nomusa DLAMINI #### This document has been send to: | The coordinator by WP Leader | Date: August 2011 | |--------------------------------------|--------------------| | To the Commission by the Coordinator | Date: October 2011 | ^{*} PU: Public; PP: Restricted to other programme participants (including the Commission Services); RE: Restricted to a group specified by the consortium (including the Commission Services); CO: Confidential, only for members of the consortium (including the Commission Services) # **TABLE OF CONTENTS** | Int | troduction | 3 | |-----|--|----| | A. | HACCP plans for Group 1- Cereal-based products | 4 | | В. | HACCP studies for meat and fish products | 15 | | C. | HACCP for plant extracts as functional foods | 21 | | D. | Summary of microbial and other hazards associated with the | | | pro | oducts per group | 27 | #### **INTRODUCTION** The HACCP training was given at the first AFTER Project meeting in Cotonou, Benin (12-15 October 2010) and subsequently a report on the workshop and training support material on HACCP was produced (**D 1.1.1.1** and **D 1.3.1.1 respectively**), both of which are/will be available on the AFTER web site. This present document describes steps towards implementation of HACCP for the products in the 3 Groups (**Part A**: Group 1-Cereal-based; **Part B**: Group 2-Meat and fish products; **Part C** Group 3-Plant extracts as functional foods). In brief, the role of HACCP is to provide continual self inspection, consequently, regulatory bodies have access to documentation that food safety is practiced at all times. This encourages a proactive attitude to food safety instead of reacting to out-of-control procedures. To recap, from the training materials, the following are the general requirement/guidelines for the Hazard Analysis and Critical Control Points (HACCP) System: - 1. Prior to the application of HACCP, the food sector should have prerequisite programmes in place such as GMP (Good Manufacturing Practice), or GHP (Good Hygienic Practice) according the CODE general principles of food hygiene, the appropriate code of practices and appropriate food safety requirements (legislation). The Prerequisite programs should be well established, fully operations and verified to facilitate successful application and implementation of HACCP - 2. The intent of the HACCP system is to focus control at CCPs. Redesign of the operation should be considered if a hazard which must be controlled is identified but no CCPs are found - 3. HACCP should be applied to each specific operation separately. - 4. The HACCP plan should be reviewed and necessary changes made when a modification is made to a product, process or any step. - 5. Management awareness and commitment is necessary for effective HACCP implementation - 6. It has been recognized that when applying HACCP (especially for small and less developed businesses), flexibility appropriate to the business should be exercised but in either case all seven principles must be applied to the HACCP system The HACCP plans that are presented in this report (Table 1 to 10) are based on the survey and literature reports, especially where survey reports are not available. # A. HACCP plans for Group 1- Cereal-based products **Table 1:** Hazard analysis critical control points (HACCP) for kenkey (adapted from Amoa-Awua et al., 1998) | Process step | Hazard | Control | Critical limits | Monitoring | Corrective action | |---|---|---|---|--|---| | | | measure | | procedure | | | Maize | -Mycotoxins (aflatoxins, fumonisins, ochratoxin) -Foreign material (cob pieces, stones, glass, insects) | -Purchase good quality material | -Moisture
content <13%
-legislated levels
of selected
mycotoxins | -Visual inspection -Random sampling of batches and analysis for mycotoxins | -Reject raw
material that is not
up to standard
-Inform supplier | | Steeping | -Spoilage and pathogenic microorganisms | -Clean water
-pH control to
desired level | -Transparent,
clear, odourless
and colourless
water
-pH 4.2±0.1
-Keep hands off | -Visual
inspection
-Measure pH,
or use pH
strips | -Use boiled water for steeping -Educate the processors -Could use acidifying agents like sodium metabisulphite | | Fermentation
(paste, dough,
mash) | -Mycotoxins -Spoilage and pathogenic microorganisms | -Adhere to
fermentation
time
-Cover the
dough | -pH must not be
more than 3.9
-Titratable
acidity-lactic acid
1.4-2%
Acetic acid: 0.18-
0.23% | -Visual
inspection
-Measure pH
and use of pH
strips | -Speed up
fermentation
process by back
sloping, or
inoculating with
dough from a
previous batch | | Cooking | -Residual
mycotoxins
-Packaging
material
contamination | Adequate cooking for at least 3 hours | -not less than 3
hours cooking
>10 parts per
billion of aflatoxin | -Record time | -Heat for longer | | Final Product | | | >100 cfu/g of
foreign bacteria
(non LAB)
>100 cfu/g of
moulds
>10 parts | | | | Cleaning | -Contamination with spoilage and pathogenic microorganisms | -Good
housekeeping
and personal;
hygiene
-Maintenance of
equipment | -Clean premises, processing equipment and vessels -trained processing staff | -Visual
inspection
-Swabbing | -Clean premises,
equipment and
vessels
-Clean factory
coats
-Wash hands
-Use gloves | #### **Identifying Critical Control for each product Kenkey** Fig 1: Flow diagram of Kenkey processing and suggested critical control points **Table 2**: Hazard analysis critical control points (HACCP) for Gowe (Beninese fermented cereal paste) | Process step | Hazard | Control
measure | Critical
limits | Monitoring procedure | Corrective action | |--|--|---|---|--|---| | Maize,
Sorghum | -Mycotoxins (aflatoxins, fumonisins, ochratoxin) -Foreign material | -Purchase
good quality
material | -Moisture
content
<13%
-legislated
levels of
selected
mycotoxins | -Visual inspection -Random sampling of batches and analysis for mycotoxins | -Reject raw
material that is
not up to
standard
-Inform supplier | | Steeping of
sorghum and
maize | -Spoilage and pathogenic microorganisms | -Clean water
-pH control to
desired level | Transparent, clear, odourless and colourless water -pH 4.2±0.1 -Keep hands off | -Visual
inspection
-Measure pH,
or use pH
strips | -Use boiled water
for steeping
-Educate the
processors
-Could use
acidifying agents
like sodium
metabisulphite | | Germination
of sorghum
(Preparation
of sorghum
malt) | Mycotoxin due
to mould
growth | Purchase good
quality
sorghum | Mould
growth
observed | -Visual
inspection | -Reject germinated seeds with mould growth -Treat grain with mould inhibitor (probably) -Wash the grain in sodium metabisulphite?? | | Fermentation
(paste, mash) | -Mycotoxins -Spoilage and pathogenic microorganisms | -Adhere to
fermentation
time
-Cover the
dough | -pH must not
be more
than 3.9
-Titratable
acidity-lactic
acid 1.4-2%
Acetic acid:
0.18-0.23% | -Visual
inspection
-Measure pH
and use of pH
strips | -Speed up
fermentation
process by
backsloping, or
inoculating with
dough from a
previous batch | | Cooking | Residual
mycotoxins
- | Product
normally
cooked for a
short time | >10 parts
per billion of
aflatoxin | | Visual inspection | | Sugar | Spoilage
microorganisms,
yeast or
pathogens | Sugar from a reputable source (low microbial counts) | | -Visual tests
-Microbial
examination | Reject suspect
sugar, or dissolve
in minimum
water and
preheat prior to
use | | Final Product | | | >100 cfu/g | | | |---------------|----------------|---------------|-------------|------------|-----------------| | | | | of foreign | | | | | | | bacteria | | | | | | | (non LAB) | | | | | | | >100 cfu/g | | | | | | | of moulds | | | | | | | >10 parts | | | | Cleaning | -Contamination | -Good | -Clean | -Visual | -Clean premise, | | | with spoilage | housekeeping | premises, | inspection | equipment and | | | and pathogenic | and personal; | processing | -Swabbing | vessels | | | microorganisms | hygiene | equipment | | -Clean factory | | | | -Maintenance | and vessels | | coats | | | | of equipment | -trained | | -Wash hands | | | | | processing | | -Use gloves | | | | | staff | | | Fig 2: Flow diagram of gowe processing and suggested critical control points **Table 3:** HACCP of Akpan (Beninise thirst quenching beverage) | Process step | Hazard | Control | Critical limits | Monitoring procedure | Corrective action | |---|--|---|---|--|--| | Maize,
Sorghum
(mostly
maize) | -Mycotoxins (aflatoxins, fumonisins, ochratoxin) -Foreign material | -Purchase good
quality material | -Moisture
content
<13%
-legislated
levels of
selected
mycotoxins | -Visual inspection -Random sampling of batches and analysis for mycotoxins | -Reject raw material that is not up to standard -Inform supplier | | Steeping | -Spoilage and pathogenic microorganisms | -Clean water
-pH control to
desired level | -Transparent,
clear,
odourless
and
colourless
water
-pH 4.2±0.1
-Keep hands
off | -Visual
inspection
-Measure
pH, or use
pH strips | -Use boiled water for steeping -Educate the processors -Could use acidifying agents like sodium metabisulphite | | Fermentation
(paste, mash,
dough) | -Mycotoxins
-Spoilage and
pathogenic
microorganisms | -Adhere to
fermentation
time
-Cover the
dough | -pH must not
be more than
3.9
-Titratable
acidity-lactic
acid 1.4-2%
Acetic acid:
0.18-0.23% | -Visual
inspection
-Measure
pH and use
of pH strips | -Speed up
fermentation
process by
back sloping,
or inoculating
with dough
from a
previous batch | | Cooking | Residual
mycotoxins | Adequate cooking | -not less than
3 hours
cooking
>10 parts per
billion of
aflatoxin | -Record
time | -Heat for
longer | | Sugar, milk, ice | Spoilage and pathogenic microorganisms, yeast | -Reputable
source of sugar
-Milk must be
pasteurised
-Ice must be
from good
quality water | | Good quality products | | | Final Product | -Contamination | | >100 cfu/g of
foreng
bacteria (non
LAB)
>100 cfu/g of
moulds
>10 parts | -Visual | -Clean | | Cleaning | -Contamination | -Good | -Clean | -Visual | -Clean | | Process step | Hazard | Control | Critical limits | Monitoring | Corrective | |--------------|----------------|-----------------|-----------------|------------|----------------| | | | measure | | procedure | action | | | with spoilage | housekeeping | premises, | inspection | premise, | | | and pathogenic | and personal; | processing | -Swabbing | equipment | | | microorganisms | hygiene | equipment | | and vessels | | | | -Maintenance of | and vessels | | -Clean factory | | | | equipment | -trained | | coats | | | | | processing | | -Wash hands | | | | | staff | | -Use gloves | Fig 3: Flow diagram of akpan processing and suggested critical control points Table 4: HACCP for Kishk | Process step | Hazard | Control
measure | Critical limits | Monitoring procedure | Corrective action | |--------------------------------------|---|---|---|--|---| | Wheat | -Mycotoxins
(aflatoxins,
fumonisins,
ochratoxin)
-Foreign
material | -Purchase good
quality material | -Moisture
content
<13%
-legislated
levels
selected
mycotoxins | -Visual inspection -Random sampling of batches and analysis for mycotoxins | -Reject raw
material that is
not up to standard
-Inform supplier | | Par boiling
the wheat | -Residual
mycotoxins | -Adequate
cooking step | -Boil for at
least for 4
hours | -Record
cooking time | -Heat for longer | | Fermented
milk | -Spoilage and pathogenic microorganisms | -Adhere to
fermentation
time | -pH limit
-Titratable
acidity,
minimum | -Measure pH
and use of pH
strips | -Speed up
fermentation
process by
backsloping, or
inoculating with
milk from a
previous batch | | Other ingredients: Salt, cumin seeds | Spoilage and pathogenic microorganisms | Good quality ingredients | Low
microbial
counts >
cfu/g | Microbial
counts done
for each batch | Reject suspect
batches of
ingredients | | Fermentation | Spoilage and pathogenic microorganisms | Adequate reduction of pH | pH below
4.2 | pH strips, pH
measurements | Speed up
fermentation use
back sloping
methods | | Sun drying | Dust as source of moulds and other microorganisms | Cover and protect from dust | | Visual
inspection | Use drying ovens | | Final Product | | | >100 cfu/g
of foreign
bacteria
(non LAB)
>100 cfu/g
of moulds
>10 parts | | | | Cleaning | -Contamination
with spoilage
and pathogenic
microorganisms | -Good
housekeeping
and personal;
hygiene
-Maintenance
of equipment | -Clean premises, processing equipment and vessels -trained processing staff | -Visual
inspection
-Swabbing | -Clean premise,
equipment and
vessels
-Clean factory
coats
-Wash hands
-Use gloves | Fig 4: Flow diagram of Kishk processing and suggested critical control points # B. HACCP studies for meat and fish products Table 5: HACCP plan for Kitoza | Process step | Hazard | Control | Critical limits | Monitoring | Corrective | |---------------------------------------|---|--|--|---|--| | | | measure | | procedure | action | | Pork or Beef
meat | -Contaminated meat, parasites found in beef and pork meat -Spoilage and pathogenic microorganisms -animal parasites that can infect humans (tape worm etc | -Select good quality meat that is not spoiled or smelly -Purchase meat from reputable sources or registered butchers that have meat inspectors, -Animals must be slaughtered after veterinary inspection | -Microbial limits of raw meat, and type of bacteria -presence of parasites or signs of disease | -Visual inspection -Purchase meat from reputable butchers -Inspection reports | -Reject meat from animals that are not examined by veterinarian, or animals that are sick -Reject suspect meat | | Slicing and cutting into strips | -Spoilage and pathogenic microorganisms | -Use clean utensils -Clean processing environment -Examination of animals by veterinary department, and the meat by health inspector | -healthy animals -Meat must not show signs of deterioration or have an odour | -Visual inspection -Traceability, -Certificate of animal and meat inspection | -Reject meat
from
suspicious
sources
-Reject bad
quality meat | | Marinating,
spicing and
salting | -Contamination
from spices and
salts
-Spoilage and
pathogenic
microorganisms | -Use clean
spices,
hygienically
produced or
decontaminated | Microbial
levels | -Visual
inspection
-Microbial
populations in
the spices | -Reject dirty
spices, or
those with
high
microbial
and
pathogenic
microbial
counts | | Smoking | -Spoilage and
pathogenic
organisms
-Benzopyrene | -Adequate
smoking time
-Avoid burning | -Levels of
benzopyrene | Visual inspection-visible burning -monitor smoking times | -Reject off
flavour
meat, that is
over smoked | Fig 5: Flow diagram of kitoza processing and suggested critical control points Table 6: HACCP plan for kong | Process step | Hazard | Control
measure | Critical limits | Monitoring procedure | Corrective action | |--------------------|--|--|--|---|---| | Fish: | -Contamination with environmental contaminants like toxic waste, heavy metals, spoilage and pathogenic microorganisms -Contamination of the fish flesh with microorganisms and pathogens from the fish gut | -Examine fish
and determine
levels of heavy
metals
-Use clean
water | -Sign of disease -Sign of spoilage> heavy metals | -Visual inspection -Analysis of flesh -microbial analysis | -Use clean utensils and water (preferable running water) -wash the eviscerated fish, and place in separate container | | Evisceration | -Spoilage and pathogenic microorganisms -Contamination by dust -Wet kong microbial and pathogenic microorganism -Maggots | -Hygienic
practices,
cleaning and
washing the
fish
-Cover the fish | -microbial
levels
- | -Visual
-Microbial
levels
evaluated | -Cover during drying -Cover smoked product, ensure that the fish is of good quality | | Wet smoked
kong | -Spoilage and pathogenic microorganism -Maggots | Source of fish, cleaning, salting | Pathogenic
microorganisms | Microbial load
Visual-signs of
spoilage | -Select good
quality fish
use
-Reject poor
quality fish
-reject spoilt
fish and with
maggot
infestation | | Dry smoked
kong | -Pathogenic
microorganism
-Benzopyrene
-Moulds may
produce toxins | -Hygienic
processing
-Storage
-levels of
salting | >% Moisture | -Visual inspection -Microbial levels -determine levels of benzopyrene | -Reject suspect fish that has become mouldy - Cover, and dry in a controlled environment -Use fly repellants (natural | Fig 6: Flow diagram of kong processing and suggested critical control points **Table 7:** HACCP study for Lanhouin (Beninese fermented fish) | Process step | Hazard | Control
measure | Critical limits | Monitoring procedure | Corrective action | |--|--|--|--|---|--| | Fish: | -Spoilage and pathogenic microorganisms from the environment Environmental toxic contaminants (heavy metals and other toxins) -Contamination of the fish flesh with microorganisms and pathogens from the fish gut | -Assess
environment
where the fish
is sourced | -Sign of disease
-Sign of
spoilage
-Levels of heavy
metals | -Visual inspection -Determine levels of heavy metals -Microbial levels | -Use clean utensils and water (preferable running water) -wash the eviscerated fish, and place in separate container | | Cleaning and evisceration of fish | Toxins and spoilage and pathogenic microorganisms from the fish intestine | -Separate fish
gut contents,
and wash the
fish using clean
water | -Level of
specific
pathogenic
microorganisms | Microbial examination and identification of microorganisms | Reject batches
with high
levels of
contamination | | Ripening of
the
eviscerated
fish | Pathogenic and spoilage bacteria | Control process promote fermentative microorganisms | Levels of pathogens | | Reject fish with high pathogen counts | | Fish Salting | Contamination
from salt | Use clean salt | Microbial levels -other minerals and impurities | -Visual
-monitor
contamination
with halophiles,
moulds, yeast | -Reject dirty salt, or clean the salt dy dissolving in hot water and allowing particles to settle | | Fish:
Ripening of
whole fish
(lanhouin) | -Type of fish -Spoilage and pathogenic microorganisms | -Fish species
must be
correct-not
histamine
producers
-Clean water,
salt levels-for
whole
fermented fish | -Fish identified
-Histamine
levels
monitored
-Presence of
pathogens
-Clean water | -Visual
inspection
- | -Reject
suspicious fish
-Reject fish
that is visibly
rotten | | Fermentation | Spoilage and | -Clean fish and | - levels of | -Visual | -Reject spoilt | | Process step | Hazard | Control measure | Critical limits | Monitoring procedure | Corrective action | |--------------|--|------------------------------------|--|--|--| | fish | pathogenic
microorganisms
-Histamine | utensils -Control the fermentation | pathogens, non
fermenters
-Histamine,
max permitted
is 25ppm | inspection -Plate counts and isolation of pathogenic microorganism use selective microbial media | fish -use clean equipment and water -use adequate levels of salt | | Sundrying | -Contamination
by spoilage and
pathogenic
microorganisms
(fliesLarvae
and maggots)
-Dust | -Cover the drying product | Microbial levels | -Visual
inspection | Cover, and dry in a controlled environment -Use fly repellants (natural) | Fig 7: Flow diagram of lanhouin processing and suggested critical control points # C. HACCP for plant extracts as functional foods Table 8: HACCP for baobab | Process step | Hazard | Control
measure | Critical limits | Monitoring procedure | Corrective action | |--|--|--|-----------------|---|---| | Baobab (Buy) | Spoilage and pathogenic microorganisms | Quality of raw material, dryness or extent of maturity | | Visual | Reject bad
fruits | | Dried pulp-
separation
from the seed | -Spoilage and pathogenic microorganisms -Mould growth during storage | -Storage
conditions
-Control
moisture
levels | Microbial count | Visual inspection Measure moisture levels Monitor microbial content | -Reject or
further dry
the pulp if
moisture too
high
-reject spoilt
pulp showing
visible mould
growth | | Juice
preparation
(water) | Microbial
contaminants-
Yeasts, lactic
acid bacteria | Good quality
water must
be used
-Clean utenils | cfu/g | -Monitor
levels in the
juice
preparation | -Boil water
-Clean
utensils | Fig 8: Flow diagram of baobab processing and suggested critical control points Table 9: HACCP Plan for Bissap | Process step | Hazard | Control | Critical limits | Monitoring | Corrective | |--------------|----------------|----------------|-----------------|---------------|--------------| | | | measure | | procedure | action | | Hibiscus | -Contamination | -Cleaning and | -Dust and | | -Reject poor | | (Bissap) | from | washing | microbial | | quality | | | environment | before | contamination | | materials | | | | processing to | | | -Hygienic | | | | juice | | | processing | | | | | | | -Washing | | | | | | | -Clean or | | | | | | | boiled water | | | | | | | -Sugar and | | | | | | | other | | | | | | | ingredients | | | | | | | must be | | | | | | | cleaned and | | | | | | | tested | | Juice | Microbial | Good quality | cfu/g | -Monitor | -Boil water | | preparation | contaminants- | water must | | levels in the | -Clean | | (water) | Yeasts, lactic | be used | | juice | utensils | | | acid bacteria | -Clean utenils | | preparation | | **Fig 9**: Flow diagram of bissap (*Hibiscus sabdariffa*) processing and suggested critical control points Table 10: HACCP plan for Jaabi | Process step | Hazard | Control
measure | Critical limits | Monitoring procedure | Corrective action | |---|---|--|-----------------------------------|--|---| | Jaabi fruit | -Contamination from environment | -Cleaning processing to juice | -Dust and microbial contamination | Visual for blemishes, spoilage -Microbial counts | -Reject poor quality materials -Hygienic processing -Washing -Clean or boiled water -Sugar and other ingredients must be cleaned and tested | | Fruit grinding | -Microbial contaminants | Good quality
fruits and
clean utensils | cfu/g | -Monitor
levels in the
fruit | -clean fruits
-Clean
utensils | | Moulding of
the flour | Water added to flour, and it moulded - Staphylococcus from the hands -Other spoilage moulds | -Good
hygiene
-Boil water | cfu/g | Monitor
levels, wash
hands | | | Steaming,
roasting or
drying of the
jaabi cake | -Spoilage and pathogenic microorganisms -Contaminants from the environment -Benzopyrene fromrasting | | | | | Fig 10: Flow diagram of jaabi processing and suggested critical control points # D. Summary of microbial and other hazards associated with the products per group #### Group 1 (Cereal-based Products) #### **Biological hazards** **Microorganisms**: *Bacillus cereus*, mycotoxigenic fungi, microorganisms from the workers (viruses, *E. Coli, Shigella, S. aureus*) Other hazards: Aflaxoxin, environmental contaminants such as insecticides, pesticides #### Group 2 (Meat and fish products) #### Biological hazards associated with meat **Pathogenic microorganisms**: Bacillus cereus, Clostridium perfringens, Clostridium botulinum, Listeria monocytogens, Escherichia coli O157:H7, Salmonella, Shigella, Staphylococcus aureus (the preformed heat stable toxin), viruses **Control measure:** For bacteria, the control is mainly heat treat, which can also inactivate some toxins they produce **Parasites**: *Taenia* spp (beef and pork), *Trichinella spiralis* (pork); Control is cooking, or avoid contaminated meat. Other hazards: nitrates and nitrites in smoked meat, banzapyrene #### Biological hazards associated with Fish **Pathogenic organisms:** same as for meat, and in addition, *Vibrio, viruses,* and contamination from the workers Toxins and toxic elements: scrombotoxin, mercury, PCB #### Group 3 (Plant extracts as functional foods) **Contamination from the environment and processors**: Staphylococcus aureus (may not grow because of low pH), Bacillus spp, viruses, Toxins: Mycotoxins, insecticides, pesticides